Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

50Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims. We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods. We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results. We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 M⊙ yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is not visible in the X-ray band because of the absorption by the stellar atmosphere. We also suggest that a non-negligible optical depth of X-ray emission lines produced by post-shock accreting plasma may explain the almost constant mass-accretion rates derived in X-rays if the effect is larger in stars with higher optical mass-accretion rates. © ESO, 2011.

Cite

CITATION STYLE

APA

Curran, R. L., Argiroffi, C., Sacco, G. G., Orlando, S., Peres, G., Reale, F., & Maggio, A. (2011). Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. Astronomy and Astrophysics, 526(13). https://doi.org/10.1051/0004-6361/201015522

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free