EXPLORATION of VIBROTACTILE BIOFEEDBACK STRATEGIES to INDUCE STANCE TIME ASYMMETRIES

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: Gait symmetry is the degree of equality of biomechanical parameters between limbs within a gait cycle. Human gait is highly symmetrical; however, in the presence of pathology, gait often lacks symmetry. Biofeedback (BFB) systems have demonstrated the potential to reduce gait asymmetry, improve gait function, and benefit overall long-term musculoskeletal health. OBJECTIVE(S): The aim of this study was to develop a BFB system and evaluate three unique BFB strategies, including bidirectional control – constant vibration (BC), bidirectional control – variable vibration (BV), and unidirectional control – variable vibration (UV) relevant to gait symmetry. The assessed feedback strategies were a combination of vibration frequency/amplitude levels, vibration thresholds, and vibrotactile stimuli from one and two vibrating motors (tactors). Learning effect and short-term retention were also assessed. METHODOLOGY: Testing was performed using a custom BFB system that induces stance time asymmetries to modulate temporal gait symmetry. The BFB system continuously monitors specific gait events (heel-strike and toe-off) and calculates the symmetry ratio, based on the stance time of both limbs to provide real-time biomechanical information via the vibrating motors. Overall walking performance of ten (n=10) able-bodied individuals (age 24.8 ± 4.4 years) was assessed via metrics of symmetry ratio, symmetry ratio error, walking speed, and motor's vibration percentages. FINDINGS: All participants utilized BFB somatosensory information to modulate their symmetry ratio. UV feedback produced a greater change in symmetry ratio, and it came closer to the targeted symmetry ratio. Learning or short-term retention effects were minimal. Walking speeds were reduced with feedback compared to no feedback; however, UV walking speeds were significantly faster compared to BV and BC. CONCLUSION: The outcomes of this study provide new insights into the development and implementation of feedback strategies for gait retraining BFB systems that may ultimately benefit individuals with pathological gait. Future work should assess longer-term use and long-term learning and retention effects of BFB systems in the populations of interest.

Cite

CITATION STYLE

APA

Escamilla-Nunez, R., Sivasambu, H., & Andrysek, J. (2022). EXPLORATION of VIBROTACTILE BIOFEEDBACK STRATEGIES to INDUCE STANCE TIME ASYMMETRIES. Canadian Prosthetics and Orthotics Journal, 5(1). https://doi.org/10.33137/CPOJ.V5I1.36744

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free