Sliding modes for fault tolerant control

86Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

As modern technological systems increase in complexity, their corresponding control systems become more and more sophisticated. In order to increase the reliability, which is crucial topic in industrial applications. The main focus of this chapter will be on the design of fault tolerant control (FTC) strategy. Therefore, FTC has found extensive applications in multiple domains including mechanical engineering, electrical engineering, control engineering, biomedical engineering, and micro-engineering. This chapter gives a brief overview in the field of FTC (definitions, practical requirements and classification). On the other hand, give a brief introduction to the concept of sliding mode control and examine its properties. Sliding surface design and tracking requirements are also discussed. In many ways, this chapter demonstrates the true theoretical and applications depth to which the sliding mode control paradigm has been developed today in the fields of FTC. Also, highlights the benefits and give discussions of some FTC approaches based SMC. At the end, in order to introduce the concept and to prove the effectiveness of the proposed approach a permanent magnet synchronous motor (PMSM) systems case study will be presented.

Cite

CITATION STYLE

APA

Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. Studies in Computational Intelligence, 576, 407–433. https://doi.org/10.1007/978-3-319-11173-5_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free