Explainable artificial intelligence‐based decision support system for assessing the nutrition‐related geriatric syndromes

9Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

The use of artificial intelligence in geriatrics is very promising and relevant, as the diagnosis of a geriatric patient is a complex, experience‐based, and time‐consuming process that involves a variety of questionnaires and subjective and inaccurate patient responses. This paper pro-poses the explainable artificial intelligence‐based (XAI) clinical decision support system (CDSS) to assess nutrition‐related factors (symptoms) and to determine the likelihood of geriatric patient health risks associated with four syndromes: malnutrition, oropharyngeal dysphagia, dehydration, and eating disorders in dementia. The proposed system’s prototype was tested under real conditions at the geriatric department of Lithuanian University of Health Sciences Kaunas Hospital. The subjects of this study were 83 geriatric patients with various health conditions. The assessments of the nutritional status and syndromes of the patients provided by the CDSS were compared with the diagnoses of the physicians obtained using standard assessment methods. The results show that proposed CDSS can efficiently diagnose nutrition‐related geriatric syndromes with high accuracy: 87.95% for malnutrition, 87.95% for oropharyngeal dysphagia, 90.36% for eating disorders in dementia, and 86.75% for dehydration. The research confirms that the proposed XAI‐based CDSS is an effective tool, able to assess nutrition‐related health risk factors and their dependencies and, in some cases, makes even a more accurate decision than a less experienced physician.

Cite

CITATION STYLE

APA

Petrauskas, V., Jasinevicius, R., Damuleviciene, G., Liutkevicius, A., Janaviciute, A., Lesauskaite, V., … Bitinaite‐paskeviciene, R. (2021). Explainable artificial intelligence‐based decision support system for assessing the nutrition‐related geriatric syndromes. Applied Sciences (Switzerland), 11(24). https://doi.org/10.3390/app112411763

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free