Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes

124Citations
Citations of this article
141Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The temperature at the centre, the periphery and the entrance of a honey bee colony (Apis mellifera carnica) was continuously determined during the summer season and the broodless time in winter. During the summer season the temperature in the brood nest averages 35.5°C with brief excursions up to 37.0°C and down to 33.8°C. Increasing environmental temperatures resulted in linear increases in the temperature of the hive entrance, its periphery and its centre. The temperature in the centre of an overwintering cluster is maintained at an average value of 21.3°C (min 12.0°C, max 33.5°C). With rising ambient temperatures the central temperature of a winter cluster drops whereas the peripheral temperature increases slightly. With decreasing external temperatures the peripheral temperature is lowered by a small amount while the cluster's centre temperature is raised. Linear relationships are observed between the central and the ambient temperature and between the central temperature and the temperature difference of the peripheral and the ambient temperatures. The slopes point to two minimum threshold values for the central (15°C) and the peripheral temperature (5°C) which should not be transgressed in an overwintering cluster. Microcalorimetric determinations of the heat production were performed on the three castes of the honey bee: workers, drones and queens of different ages. Among these groups single adult workers showed the highest heat production rates (209 mW·g-1) with only neglectible fluctuations in the heat production rate. Juvenile workers exhibited a mean heat production rate of 142 mW·g-1. The rate of heat production of adult workers is strongly dependent upon the number of bees together in a group. With more than 10 individuals weight-specific heat dissipation remains constant with increasing group sizes at a level approximately 1/17 that of an isolated bee. Differences are seen between the rates of virgin (117 mW·g-1) and laying (102 mW·g-1) queens. Laying queens showed less thermal fluctuations than virgin queens. High fluctuations in heat production rates are observed for drones. In both groups (fertile, juvenile) phases of high and extremely low activity succeed one another. The heat production of juvenile drones was 68 mW·g-1, that of fertile drones 184 mW·g-1 due to stronger locomotory activities. © 1989 Springer-Verlag.

Cite

CITATION STYLE

APA

Fahrenholz, L., Lamprecht, I., & Schricker, B. (1989). Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. Journal of Comparative Physiology B, 159(5), 551–560. https://doi.org/10.1007/BF00694379

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free