TMIC-06. MYELOID POPULATIONS AND THE EFFECT OF NEOADJUVANT PD-1 INHIBITION IN THE GLIOBLASTOMA MICROENVIRONMENT: A SURFACEOMIC AND TRANSCRIPTOMIC DISSECTION AT THE SINGLE-CELL LEVEL

  • Mochizuki A
  • Lee A
  • Orpilla J
  • et al.
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

INTRODUCTION: Glioblastoma (GBM) is the most common malignant brain tumor in adults and is associated with a dismal prognosis. Neoadjuvant anti-PD-1 blockade has demonstrated efficacy in melanoma, non-small cell lung cancer and recurrent GBM; however, responses vary. While T cells have garnered considerable attention in the context of immunotherapy, the role of myeloid cells in the GBM microenvironment remains controversial. METHOD(S): We isolated CD45+ immune populations from patients who underwent brain tumor resection at UCLA. We hypothesized that myeloid cells in glioblastoma contribute to T cell dysfunction; however, this immune suppression can be mitigated by neoadjuvant PD-1 inhibition. To test this, we utilized mass cytometry and single-cell RNA sequencing to characterize these immune populations. RESULT(S): Mass cytometry profiling of tumor infiltrating lymphocytes from patients with GBM demonstrated a preponderance of CD11b+ myeloid populations (75% versus 25% CD3+). At the transcriptomic level, myeloid cells in newly diagnosed GBMs exhibited decreased expression of CCL4 (loge fold change-1.18, Bonferroni-adjusted P = 1.62x10-254) and its ligands compared to anaplastic astrocytoma. In ranked gene set enrichment analysis, patients who received neoadjuvant pembrolizumab demonstrated enrichment in TNFalpha-, NFkappaB-and lipid metabolism-related gene sets by bootstrapped Kolmogorov-Smirnov test (Benjamini-Hochberg adjusted P = 4.74x10-3, 1.45x10-2 and 2.48x10-3, respectively) in tumor-associated myeloid populations. Additionally, singlecell trajectory analysis demonstrated increased CCL4 and decreased ISG15 with neoadjuvant checkpoint inhibition. CONCLUSION(S): Here, we utilize mass cytometry and single-cell RNA sequencing to demonstrate the predominance and transcriptomic features of myeloid populations in GBM. Myeloid cells in patients who receive neoadjuvant PD-1 blockade re-express increased levels NFkappaB, TNFalpha and CCL4, a cytokine crucial for the recruitment of dendritic cells to the tumor for antigen-specific T cell activation. By delving into the GBM microenvironment at the single-cell level, we hope to better delineate the role of myeloid populations in this uniformly fatal tumor.

Cite

CITATION STYLE

APA

Mochizuki, A., Lee, A., Orpilla, J., Kienzler, J., Galvez, M., Chow, F., … Prins, R. (2019). TMIC-06. MYELOID POPULATIONS AND THE EFFECT OF NEOADJUVANT PD-1 INHIBITION IN THE GLIOBLASTOMA MICROENVIRONMENT: A SURFACEOMIC AND TRANSCRIPTOMIC DISSECTION AT THE SINGLE-CELL LEVEL. Neuro-Oncology, 21(Supplement_6), vi248–vi248. https://doi.org/10.1093/neuonc/noz175.1040

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free