Methane, the main component of natural gas, is an interesting source of chemicals and clean liquid fuels, and a promising alternative raw material to oil. Among the possible direct routes for methane conversion, its aromatization under non-oxidative conditions has received increasing attention, despite the low conversions obtained due to thermodynamic limitations, because of its high selectivity to benzene. Mo/H-ZSM-5, the first bifunctional zeolite-catalyst proposed for this reaction, is still considered as one of the most adequate and has been widely studied. Although the mono-or bifunctional nature of the MDA mechanism is still under debate, it is generally accepted that the Mo species activate the C-H bond in methane, producing the intermediates. These will aro-matize on the Brønsted acid sites of the zeolite, whose pore dimensions will provide the shape selectivity needed for converting methane into benzene. An additional role of the zeolite’s Brønsted acid sites is to promote the dispersion of the Mo oxide precursor. Here, we show the influence of the different preparation steps—metal incorporation, calcination and activation of the Mo/ZSM-5-on the metal dispersion and, therefore, on the activity and selectivity of the final catalyst. Metal dispersion is enhanced when the samples are calcined under dynamic conditions (DC) and acti-vated in N2, and the benefits are larger when the metal has been incorporated by solid state reaction (SSR), as observed by FESEM-BSE and H2-TPR. This leads to catalysts with higher activity, increased aromatic selectivity and improved stability towards deactivation.
CITATION STYLE
Portilla, M. T., Llopis, F. J., Moliner, M., & Martinez, C. (2021). Influence of preparation conditions on the catalytic performance of mo/h-zsm-5 for methane dehydroaromatization. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125465
Mendeley helps you to discover research relevant for your work.