The aim of the present study was to investigate the correlation between the adiponectin gene single nucleotide polymorphism (SNP)45 T/G and long-term oxidative stress in type II diabetes mellitus (T2DM) patients with carotid atherosclerosis. Patients with T2DM were divided into non-carotid atherosclerosis and carotid atherosclerosis groups, which were then subsequently divided into TT and TG + GG groups according to the adiponectin SNP45 T/G genotypes. Enzyme-linked immunosorbent assay, TaqMan probe quantitative polymerase chain reaction (PCR), PCR-TaqMan, color Doppler and other methods were used to determine the adiponectin levels, gene polymorphisms, acquired mitochondrial DNA (mtDNA) A3243G somatic cell mutation rates and the carotid intima-media thickness. The somatic cell mutation rate of acquired mtDNA A3243A/G in the T2DM carotid atherosclerosis group was significantly higher compared with the group without carotid atherosclerosis. In addition, the acquired mtDNA A3243A/G somatic cell mutation rate in the T2DM carotid atherosclerosis group with the adiponectin gene SNP45 TT genotype was significantly lower compared with the SNP45 TG/GG genotype group. T2DM combined with carotid atherosclerosis was associated with long-term oxidative stress. In addition, adiponectin gene SNP45 T/G was associated with increased mtDNA A3243A/G somatic mutation rates in T2DM patients with carotid atherosclerosis. Therefore, adiponectin gene polymorphisms may lead to diabetes atherosclerosis through oxidative stress.
CITATION STYLE
Piao, L., Han, Y., & Li, D. (2014). Correlation study on adiponectin gene SNP45 and long-term oxidative stress in patients with diabetes and carotid atherosclerosis. Experimental and Therapeutic Medicine, 8(3), 707–712. https://doi.org/10.3892/etm.2014.1808
Mendeley helps you to discover research relevant for your work.