Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers

1.6kCitations
Citations of this article
805Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal-insulator-metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400-700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption. © 2011 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1528

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free