Background: Stroke-induced ischemia affects both cortex and underlying white matter. Dalfampridine extended release tablets (D-ER) enhance action potential conduction in demyelinated axons, which may positively affect post-stroke recovery. Objective: Based on promising preliminary data, we compared efficacy of D-ER administered at 7.5 mg or 10 mg with placebo on post-stroke ambulation. Primary study outcome (response) was a ≥20% increase on the 2-minute walk test (2 MinWT) at 12 weeks after first drug administration. Methods: This was a multicenter, randomized, placebo-controlled, 3-arm, parallel-group, safety and efficacy trial. After obtaining baseline measures of 2 MinWT, Walk-12, and Timed Up and Go, subjects entered a 2-week, single-blind placebo run-in period and were randomized 1:1:1 to receive 7.5 mg D-ER, 10 mg D-ER, or placebo, dosed twice-daily for 12 weeks. Follow-up evaluations occurred at weeks 14 and 16 when subjects were off study drug. Results: The study was terminated early with 377 of planned 540 patients enrolled, due to no treatment effect. At week 12, mean increase in distances walked in 2 minutes were similar among the 3 study groups (14.9±40.0 feet; 19.4±39.6 feet; and 20.4±38.3 feet for placebo, 7.5 mg D-ER, and 10 mg D-ER, respectively). The proportion of subjects who showed ≥20% improvement on 2 MinWT at week 12 was 13.5%, 14.0%, and 19.0%, for placebo, 7.5 mg D-ER, and 10 mg D-ER, respectively; these were nonsignificant changes from baseline for all groups. Conclusions: D-ER at either a 7.5-mg or 10-mg dose did not significantly increase performance on the 2 MinWT in stroke survivors with gait impairment, although this study was terminated early before full enrollment. (Clinical Trial # NCT02271217).
CITATION STYLE
Page, S. J., Kasner, S. E., Bockbrader, M., Goldstein, M., Finklestein, S. P., Ning, M., … Roberts, H. (2020). A double-blind, randomized, controlled study of two dose strengths of dalfampridine extended release on walking deficits in ischemic stroke. Restorative Neurology and Neuroscience, 38(4), 301–309. https://doi.org/10.3233/RNN-201009
Mendeley helps you to discover research relevant for your work.