A scalar-relativistic DFT study of isoelectronic, quadruple-bonded Group 6 metalloporphyrins (M = Mo, W) and Group 7 metallocorroles (M = Tc, Re) has uncovered dramatic differences in ionization potential (IP) and electron affinity (EA) among the compounds. Thus, both the IPs and EAs of the corrole derivatives are 1 eV or more higher than those of the porphyrin derivatives. These differences largely reflect the much lower orbital energies of the δ- and δ*-orbitals of the corrole dimers relative to those of the porphyrin dimers, which in turn reflect the higher (+III as opposed to +II) oxidation states of the metals in the former compounds. Significant differences have also been determined between Mo and W porphyrin dimers and between Tc and Re corrole dimers. These differences are thought to largely reflect greater relativistic destabilization of the 5d orbitals of W and Re relative to the 4d orbitals of Mo and Tc. The calculated differences in IP and EA should translate to major differences in electrochemical redox potentials─a prediction that in our opinion is well worth confirming.
CITATION STYLE
Conradie, J., Vazquez-Lima, H., Alemayehu, A. B., & Ghosh, A. (2022). Comparing Isoelectronic, Quadruple-Bonded Metalloporphyrin and Metallocorrole Dimers: Scalar-Relativistic DFT Calculations Predict a >1 eV Range for Ionization Potential and Electron Affinity. ACS Physical Chemistry Au, 2(2), 70–78. https://doi.org/10.1021/acsphyschemau.1c00030
Mendeley helps you to discover research relevant for your work.