Solid-State Chemiresistors from Two-Dimensional MoS2 Nanosheets Functionalized with l-Cysteine for In-Line Sensing of Part-Per-Billion Cd2+ Ions in Drinking Water

21Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sensing of metal contaminants at ultralow concentrations in aqueous environments is vital in today's overpopulated world, with an extremely stringent limit (<5 ppb) for Cd2+ ions in drinking water. Here, we utilize sonochemically exfoliated molybdenum disulfide (MoS2) nanosheets functionalized with l-cysteine (Cys) as highly sensitive and selective two-dimensional (2D) materials for solid-state chemiresistors. We specifically targeted Cd2+ ions due to their high toxicity at low concentrations. MoS2-Cys nanosheets are fabricated using an ad hoc, low-complexity, one-pot synthesis method. Porous MoS2-Cys thin films with a high surface area are assembled from these nanosheets. Two-terminal chemiresistors incorporating MoS2-Cys films are demonstrated to be preferentially sensitive to Cd2+ ions at neutral pH, irrespective of other metal ions present in water flowing through the device. A 5 ppb concentration of the Cd2+ ions in the water stream increases the device resistivity by 20 times. Our devices operate at broad (1-500 ppb) range and fast (∼1 s) response times. Cd2+ is selectively detected because of preferential, size-driven adsorption at the interstitials between l-cysteine functional groups, combined with pH-controlled charge transfer that removes electronic gap states from MoS2. MoS2-Cys-based chemiresistors can be deployed in-line to detect metal ions without any need for additional offline measurements.

Cite

CITATION STYLE

APA

Bazylewski, P., Van Middelkoop, S., Divigalpitiya, R., & Fanchini, G. (2020). Solid-State Chemiresistors from Two-Dimensional MoS2 Nanosheets Functionalized with l-Cysteine for In-Line Sensing of Part-Per-Billion Cd2+ Ions in Drinking Water. ACS Omega, 5(1), 643–649. https://doi.org/10.1021/acsomega.9b03246

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free