The knowledge graph as the default data model for learning on heterogeneous knowledge

51Citations
Citations of this article
116Readers
Mendeley users who have this article in their library.

Abstract

In modern machine learning, raw data is the preferred input for our models. Where a decade ago data scientists were still engineering features, manually picking out the details we thought salient, they now prefer the data in their raw form. As long as we can assume that all relevant and irrelevant information is present in the input data, we can design deep models that build up intermediate representations to sift out relevant features. However, these models are often domain specific and tailored to the task at hand, and therefore unsuited for learning on heterogeneous knowledge: information of different types and from different domains. If we can develop methods that operate on this form of knowledge, we can dispense with a great deal more ad-hoc feature engineering and train deep models end-to-end in many more domains. To accomplish this, we first need a data model capable of expressing heterogeneous knowledge naturally in various domains, in as usable a form as possible, and satisfying as many use cases as possible. In this position paper, we argue that the knowledge graph is a suitable candidate for this data model. We further describe current research and discuss some of the promises and challenges of this approach.

Cite

CITATION STYLE

APA

Wilcke, X., Bloem, P., & De Boer, V. (2017). The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Science, 1(1–2), 39–57. https://doi.org/10.3233/DS-170007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free