An Evolutionary Approach for Learning Opponent's Deadline and Reserve Points in Multi-Issue Negotiation

  • Ayachi R
  • Bouhani H
  • Amor B
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The efficiency of automated multi-issue negotiation depends on the available information about the opponent. In a competitive negotiation environment, agents do not reveal their parameters to their opponents in order to avoid exploitation. Several researchers have argued that an agent's optimal strategy can be determined using the opponent's deadline and reserve points. In this paper, we propose a new learning agent, so-called Evolutionary Learning Agent (ELA), able to estimate its opponent's deadline and reserve points in bilateral multi-issue negotiation based on opponent's counter-offers (without any additional extra information). ELA reduces the learning problem to a system of non-linear equations and uses an evolutionary algorithm based on the elitism aspect to solve it. Experimental study shows that our learning agent outperforms others agents by improving its outcome in term of average and joint utility.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ayachi, R., Bouhani, H., & Amor, B. (2018). An Evolutionary Approach for Learning Opponent’s Deadline and Reserve Points in Multi-Issue Negotiation. International Journal of Interactive Multimedia and Artificial Intelligence, 5(3), 131. https://doi.org/10.9781/ijimai.2018.08.001

Readers' Seniority

Tooltip

Lecturer / Post doc 1

50%

Researcher 1

50%

Readers' Discipline

Tooltip

Computer Science 1

33%

Economics, Econometrics and Finance 1

33%

Engineering 1

33%

Save time finding and organizing research with Mendeley

Sign up for free