Soil salinity and drought severely affect all aspects of plant physiology, leading to significant losses of crop productivity and native biodiversity. A key to sustainable land use in such areas is to cultivate well-adapted native plants that are also commercially important and have the appropriate gene pool. Glycine betaine (GB) is an osmoprotectant that imparts salt and drought tolerance to some plants. It is also shown separately to provide significant health benefits to animals and humans. We investigated whether Australian saltbushes, which are extremely salt and drought tolerant and also impart health benefits to grazing animals, may have the genetic basis for GB biosynthesis, explaining the two different observations. Complementary DNAs encoding the two key enzymes of the plant GB biosynthesis pathway, choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), were identified and analysed from Atriplex nummularia and Atriplex semibaccata. The sequences showed the putative CMO proteins exhibited all functionally important features including the Reiske-type cluster (2Fe-2S) and mononuclear non-heme Fe cluster, and the putative BADHs exhibited conservation of active site residues. The expression of both genes was found to be significantly up-regulated in leaf tissues under salt stress. The leaf tissues also showed accumulation of very high levels of GB, at 29.69 mmol/kg fresh weight for A. nummularia and 42.68 mmol/kg fresh weight for A. semibaccata, which is several times higher than in cereal crops. The results demonstrate a strong potential of cultivation of saltbushes for re-vegetation and as a perennial fodder in salinity and drought-affected areas. © 2013 Versita Warsaw and Springer-Verlag Wien.
CITATION STYLE
Joseph, S., Murphy, D., & Bhave, M. (2013). Glycine betaine biosynthesis in saltbushes (Atriplex spp.) under salinity stress. Biologia (Poland), 68(5), 879–895. https://doi.org/10.2478/s11756-013-0229-8
Mendeley helps you to discover research relevant for your work.