Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type mannner (Ki(slope 1.3 μM; Ki(intercept) 44 μM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Fowler, C. J., Tiger, G., López-Rodríguez, M. L., Viso, A., Ortega-Gutiérrez, S., & Ramos, J. A. (2003). Inhibition of fatty acid amidohydrolase, the enzyme responsible for the metabolism of the endocannabinoid anandamide, by analogues of arachidonoyl-serotonin. Journal of Enzyme Inhibition and Medicinal Chemistry, 18(3), 225–231. https://doi.org/10.1080/1475636031000080216