r-Process Nucleosynthesis from Compact Binary Mergers

  • Perego A
  • Thielemann F
  • Cescutti G
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The merger of two neutron stars or of a neutron star and a black hole often result in the ejection of a few percents of a solar mass of matter expanding at high speed in space. Being matter coming from the violent disruption of a neutron star, these ejecta are initially very dense, hot and extremely rich in neutrons. The few available protons form heavy nuclei ("seeds") that absorb the more abundant free neutrons, increasing their size. The neutron density is so high that a substantial number of neutron captures occur before the resulting unstable nuclei can decay toward more stable configurations, converting neutrons into protons. Depending mostly on the initial neutron richness, this mechanism leads to the formation of up to half of the heavy elements that we observe in nature and it is called rapid neutron capture process ("$r$-process"). The prediction of the precise composition of the ejecta requires a detailed knowledge of the properties of very exotic nuclei, that have never been produced in a laboratory. Despite having long been a speculative scenario, nowadays several observational evidences point to compact binary mergers as one of the major sites where heavy elements are formed in the Universe. The most striking one was the detection of a kilonova following the merger of a neutron star binary: the light emitted by this astronomical transient is indeed powered by the radioactive decay of freshly synthesized neutron-rich nuclei and testifies the actual nature of compact binary mergers as cosmic forges.

Cite

CITATION STYLE

APA

Perego, A., Thielemann, F.-K., & Cescutti, G. (2021). r-Process Nucleosynthesis from Compact Binary Mergers. In Handbook of Gravitational Wave Astronomy (pp. 1–56). Springer Singapore. https://doi.org/10.1007/978-981-15-4702-7_13-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free