FOXN1 is critical for onycholemmal terminal differentiation in nude (Foxn1nu) mice

56Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nude mice have a mutation in the transcription factor Foxn1nu, resulting in downregulation of hair keratins. Although hair follicles develop normally, the hair fibers become structurally weak, curl, and break off at the surface. Nails in nude mice are deformed, based on alterations of the onychocyte differentiation process. Elemental microanalysis of the nail plate reveals marked decreases in sulfur concentrations in the nude mouse nail plates. Immunohistochemistry shows a lack of keratin 1 expression in terminally differentiating keratinocytes of the nail matrix. Instead, the typical differentiation process of the matrix is altered toward an epidermis-like differentiation pattern, comprising the production of filaggrin-containing keratohyalin granules in cells resembling those of the stratum granulosum, which are never observed in normally haired mice. The nail plate has diffuse basophilic stippling. It is thinner than normal, weak, and in most Foxn1 nu/Foxn1nu mice breaks where it separates from the hyponychium. These studies indicate that the Foxn1nu mutated gene has effects beyond downregulating keratin expression, including changes in filaggrin expression, and is critical for normal onycholemmal differentiation. The nails of nude mice provide new insights into the molecular controls of onychocyte differentiation, and they offer a useful model to investigate the pathogenesis of nail hypergranulosis, a common feature in human nail diseases.

Cite

CITATION STYLE

APA

Mecklenburg, L., Paus, R., Halata, Z., Bechtold, L. S., Fleckman, P., & Sundberg, J. P. (2004). FOXN1 is critical for onycholemmal terminal differentiation in nude (Foxn1nu) mice. Journal of Investigative Dermatology, 123(6), 1001–1011. https://doi.org/10.1111/j.0022-202X.2004.23442.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free