Macrophages regulate host responses to implants through their dynamic adhesion, release, and activation. Herein, we employ bisphosphonate (BP)-coated gold nanoparticle template (BNP) to direct the swift and convertible formation of Mg 2+ -functional Mg 2+ -BP nanoparticle (NP) on the BP-AuNP surface via reversible Mg 2+ -BP coordination, thus producing (Mg 2+ -BP)-Au dimer (MgBNP). Ethylenediaminetetraacetic acid-based Mg 2+ chelation facilitates the dissolution of Mg 2+ -BP NP, thus enabling the reversion of the MgBNP to the BNP. This convertible nanoassembly incorporating cell-adhesive Mg 2+ moieties directs reversible attachment and detachment of macrophages by BP and EDTA, without physical scraping or trypsin that could damage cells. The swift formation of RGD ligand- and Mg 2+ -bifunctional RGD-Mg 2+ -BP NP that yields (RGD-Mg 2+ -BP)-Au dimer (RGDBNP) further stimulates the adhesion and pro-regenerative M2-type polarization of macrophages, both in vitro and in vivo, including rho-associated protein kinase. This swift and non-toxic dimer formation can include diverse bio-functional moieties to regulate host responses to implants.
CITATION STYLE
Kang, H., Yang, B., Zhang, K., Pan, Q., Yuan, W., Li, G., & Bian, L. (2019). Immunoregulation of macrophages by dynamic ligand presentation via ligand–cation coordination. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09733-6
Mendeley helps you to discover research relevant for your work.