Whole Earth Telescope observations of BPM 37093: A seismological test of crystallization theory in white dwarfs

56Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (∼1.1 M⊙) to theoretically crystallize while still inside the ZZ Ceti instability strip (Teff ∼ 12000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing. This is distinct from the "mode trapping" caused by the stratified surface layers, which modifies the pulsation periods more selectively. In this paper we report on Whole Earth Telescope observations of BPM 37093 obtained in 1998 and 1999. Based on a simple analysis of the average period spacing we conclude that a large fraction of the total stellar mass is likely to be crystallized. © ESO 2005.

Cite

CITATION STYLE

APA

Kanaan, A., Nitta, A., Winget, D. E., Kepler, S. O., Montgomery, M. H., Metcalfe, T. S., … Barstow, M. A. (2005). Whole Earth Telescope observations of BPM 37093: A seismological test of crystallization theory in white dwarfs. Astronomy and Astrophysics, 432(1), 219–224. https://doi.org/10.1051/0004-6361:20041125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free