Active class selection

42Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents Active Class Selection (ACS), a new class of problems for multi-class supervised learning. If one can control the classes from which training data is generated, utilizing feedback during learning to guide the generation of new training data will yield better performance than learning from any a priori fixed class distribution. ACS is the process of iteratively selecting class proportions for data generation. In this paper we present several methods for ACS. In an empirical evaluation, we show that for a fixed number of training instances, methods based on increasing class stability outperform methods that seek to maximize class accuracy or that use random sampling. Finally we present results of a deployed system for our motivating application: training an artificial nose to discriminate vapors. © Springer-Verlag Berlin Heidelberg 2007.

References Powered by Scopus

The class imbalance problem: A systematic study

2618Citations
N/AReaders
Get full text

Stability and Generalization

1234Citations
N/AReaders
Get full text

Support vector machine active learning for image retrieval

1136Citations
N/AReaders
Get full text

Cited by Powered by Scopus

On the calibration of sensor arrays for pattern recognition using the minimal number of experiments

156Citations
N/AReaders
Get full text

Robot learning from human teachers

146Citations
N/AReaders
Get full text

Active learning: A survey

116Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Lomasky, R., Brodley, C. E., Aernecke, M., Walt, D., & Friedl, M. (2007). Active class selection. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4701 LNAI, pp. 640–647). Springer Verlag. https://doi.org/10.1007/978-3-540-74958-5_63

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 16

76%

Professor / Associate Prof. 3

14%

Lecturer / Post doc 1

5%

Researcher 1

5%

Readers' Discipline

Tooltip

Computer Science 19

79%

Engineering 3

13%

Chemical Engineering 1

4%

Social Sciences 1

4%

Save time finding and organizing research with Mendeley

Sign up for free