Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae

17Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An ssu2 mutation in Saccharomyces cerevisiae, previously shown to cause sulfite sensitivity, was found to be allelic to GRR1, a gene previously implicated in glucose repression. The suppressor rgt1, which suppresses the growth defects of grr1 strains on glucose, did not fully suppress the sensitivity on glucose or nonglucose carbon sources, indicating that it is not strictly linked to a defect in glucose metabolism. Because the Cln1 protein was previously shown to be elevated in grr1 mutants, the effect of CLN1 overexpression on sulfite sensitivity was investigated. Overexpression in GRR1 cells resulted in sulfite sensitivity, suggesting a connection between CLN1 and sulfite metabolism. Multicopy FZF1, a putative transcription factor, was found to suppress the sulfite sensitive phenotype of grr1 strains, but not the glucose derepression or aberrant cell morphology. Multicopy FZF1 was also found to suppress the sensitivity of a number of other unrelated sulfite-sensitive mutants, but not that of ssu1 or met20, implying that FZF1 may act through Ssu1p and Met20p. Disruption of FZF1 resulted in sulfite sensitivity when the construct was introduced in single copy at the FZF1 locus in a GRR1 strain, providing evidence that FZF1 is involved in sulfite metabolism.

Cite

CITATION STYLE

APA

Avram, D., & Bakalinsky, A. T. (1996). Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics, 144(2), 511–521. https://doi.org/10.1093/genetics/144.2.511

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free