Nucleotide polymorphism in Scots pine (Pinus sylvestris) was studied in the gene encoding phenylalanine ammonialyase (Pal, EC 4.3.1.5). Scots pine, like many other pine species, has a large current population size. The observed levels of inbreeding depression suggest that Scots pine may have a high mutation rate to deleterious alleles. Many Scots pine markers such as isozymes, RFLPs, and microsatellites are highly variable. These observations suggest that the levels of nucleotide variation should be higher than those in other plant species. A 2,045-bp fragment of the pal1 locus was sequenced from five megagametophytes each from a different individual from each of four populations, from northern and southern Finland, central Russia, and northern Spain. There were 12 segregating sites in the locus. The synonymous site overall nucleotide diversity was only 0.0049. In order to compare pal1 with other pine genes, sequence was obtained from two alleles of 11 other loci (total length 4,606 bp). For these, the synonymous nucleotide diversity was 0.0056. These estimates are lower than those from other plants. This is most likely because of a low mutation rate, as estimated from between-pine species synonymous site divergence. In other respects, Scots pine has the characteristics of a species with a large effective population. There was no linkage disequilibrium even between closely linked sites. This resulted in high haplotype diversity (14 different haplotypes among 20 sequences). This could also give rise to high per locus diversity at the protein level. Divergence between populations in the main range was low, whereas an isolated Spanish population had slightly lower diversity and higher divergence than the remaining populations.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Dvornyk, V., Sirviö, A., Mikkonen, M., & Savolainen, O. (2002). Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Molecular Biology and Evolution, 19(2), 179–188. https://doi.org/10.1093/oxfordjournals.molbev.a004070