Nanostructure is attractive and has been proved superior in numerous applications due to the unique physical and chemical properties of the nano-materials. However, facile preparation of the nanostructured materials remains challenging; much effort is still essential to obtain materials with designed morphology. As a semiconductor, SnO2 has been found a variety of applications such as solar cells and sensors, and has been extensively investigated as an anode material for lithium (Li)-ion batteries. Herein, we present a one-step and eco-friendly method to synthesize SnO2 nanorods without any templates or additives. On the basis of its structural and morphologic evolutions probed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), SnO2 nanoparticles are proposed to firstly form from its precursor Na2SnO/3H2O and then assembled to nanorods with increased hydrothermal reaction time. When used as an active material for sodium (Na)-ion batteries, the as-prepared SnO2 nanorods show a high Na-storage capacity and initial coulombic efficiency as well as good cycling stability. Our findings shed light on the preparation of nanostructured materials and contribute to developing highperformance Na-ion batteries.
CITATION STYLE
Li, Y., Wang, X., Wang, Z., & Chen, L. (2019). Facile Synthesis of SnO Nanorods for Na-Ion Batteries. ES Energy and Environment, 3, 55–59. https://doi.org/10.30919/esee8c198
Mendeley helps you to discover research relevant for your work.