Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments

59Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Small- and medium-sized unmanned aerial vehicles (UAVs) can fly for a short distance (<2 km) from a control station in a nonsegregated air space (altitudes < 100 m). It is of great interest to model the propagation channel under such condition, where there is an important influence from the environment. This paper presents multiple measurements carried out in low altitudes with a medium-sized UAV flying over a semiurban environment. Path loss exponent is given based on the measurements done at different altitudes and a height-dependent Rician K factor model is proposed. The results clearly reveal the existence of two propagation zones with very distinct channel characteristics. The breakpoint indicates the height where the condition of the channel changes rapidly. At low altitudes, the obstacles generate a large amount of multipath and the propagation is greatly affected, while at higher altitudes the influence mitigates. Our results are useful for the modeling of low altitude air-to-ground (AG) propagation channels and the performance analysis of UAV-enabling AG communication systems, such as the channel capacity and the throughput.

Cite

CITATION STYLE

APA

Qiu, Z., Chu, X., Calvo-Ramirez, C., Briso, C., & Yin, X. (2017). Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/1587412

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free