Diagnostic techniques based on biomolecules have application potential that can be realized in many fields, such as disease diagnosis, bioprocess imaging, food/beverage industries, and environmental pollutant imaging. Successful surface immobilization of biomolecules is critical to increasing the stabilization, sensitivity, and selectivity of biomolecules used in bioassay systems. Nanofibers are good candidates for the immobilization of biomolecules owing to many advantages such as morphology and pore size. In this study, montmorillonite (MMT) clay is modified with poly(amidoamine) (PAMAM) generation 3 (PAMAMG3) and added to polystyrene (PS) solutions, following which PS/MMT-PAMAMG3 nanofibers are obtained using the electrospinning method. The nanofibers are obtained by testing PS% (wt%) and MMT-PAMAMG3% (wt%) ratios and characterized with scanning electron microscopy. Antiserum amyloid A antibody (Anti-SAA) is then conjugated to the nanofibers on the electrode surface via covalent bonds using a zero-length cross linker. Finally, the obtained selective surface is used for electrochemical determination of serum amyloid A (SAA) levels. The linear range of PS/MMT-PAMAM/Anti-SAA is between 1 and 200 ng/mL SAA, and the detection limit is 0.57 ng/mL SAA. The applicability of PS/MMT-PAMAMG3/Anti-SAA is investigated by taking measurements in synthetic saliva and serum both containing SAA.
CITATION STYLE
Evren, G., Er, E., Yalcinkaya, E. E., Horzum, N., & Odaci, D. (2023). Electrospun Nanofibers including Organic/Inorganic Nanohybrids: Polystyrene- and Clay-Based Architectures in Immunosensor Preparation for Serum Amyloid A. Biosensors, 13(7). https://doi.org/10.3390/bios13070673
Mendeley helps you to discover research relevant for your work.