An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes

330Citations
Citations of this article
575Readers
Mendeley users who have this article in their library.

Abstract

The Middle East respiratory syndrome corona virus (MERS-CoV) is highly pathogenic. An immunosensor for the determination of MERS-CoV is described here. It is based on a competitive assay carried out on an array of carbon electrodes (DEP) modified with gold nanoparticles. Recombinant spike protein S1 was used as a biomarker for MERS CoV. The electrode array enables multiplexed detection of different CoVs. The biosensor is based on indirect competition between free virus in the sample and immobilized MERS-CoV protein for a fixed concentration of antibody added to the sample. Voltammetric response is detected by monitoring the change in the peak current (typically acquired at a working potential of −0.05 V vs. Ag/AgCl) after addition of different concentrations of antigen against MERS-CoV. Electrochemical measurements using ferrocyanide/ferricyanide as a probe were recorded using square wave voltammetry (SWV). Good linear response between the sensor response and the concentrations from 0.001 to 100 ng.mL −1 and 0.01 to 10,000 ng.mL −1 were observed for MERS-CoV and HCoV, respectively. The assay was performed in 20 min with detection limit as low as 0.4 and 1.0 pg.mL −1 for HCoV and MERS-CoV, respectively. The method is highly selective over non-specific proteins such as Influenza A and B. The method is single-step, sensitive and accurate. It was successfully applied to spiked nasal samples.

Cite

CITATION STYLE

APA

Layqah, L. A., & Eissa, S. (2019). An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchimica Acta, 186(4). https://doi.org/10.1007/s00604-019-3345-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free