Mitigation of tipping point transitions by time-delay feedback control

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In stochastic multistable systems driven by the gradient of a potential, transitions between equilibria are possible because of noise. We study the ability of linear delay feedback control to mitigate these transitions, ensuring that the system stays near a desirable equilibrium. For small delays, we show that the control term has two effects: (i) a stabilizing effect by deepening the potential well around the desirable equilibrium and (ii) a destabilizing effect by intensifying the noise by a factor of (1 - τ α) - 1 / 2, where τ and α denote the delay and the control gain, respectively. As a result, successful mitigation depends on the competition between these two factors. We also derive analytical results that elucidate the choice of the appropriate control gain and delay that ensure successful mitigations. These results eliminate the need for any Monte Carlo simulations of the stochastic differential equations and, therefore, significantly reduce the computational cost of determining the suitable control parameters. We demonstrate the application of our results on two examples.

Cite

CITATION STYLE

APA

Farazmand, M. (2020). Mitigation of tipping point transitions by time-delay feedback control. Chaos, 30(1). https://doi.org/10.1063/1.5137825

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free