Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 μM) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by L-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H2O2 (assessed with H2O 2-specific fluorescent dye CM-H2DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption.
CITATION STYLE
Kim, J. A., Formoso, G., Li, Y., Potenza, M. A., Marasciulo, F. L., Montagnani, M., & Quon, M. J. (2007). Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and fyn. Journal of Biological Chemistry, 282(18), 13736–13745. https://doi.org/10.1074/jbc.M609725200
Mendeley helps you to discover research relevant for your work.