Background: The presence of circulating plasma cells (CPCs) is an important laboratory indicator for the diagnosis, staging, risk stratification, and progression monitoring of multiple myeloma (MM). Early detection of CPCs in the peripheral blood (PB) followed by timely interventions can significantly improve MM prognosis and delay its progression. Although the conventional cell morphology examination remains the predominant method for CPC detection because of accessibility, its sensitivity and reproducibility are limited by technician expertise and cell quantity constraints. This study aims to develop an artificial intelligence (AI)–based automated system for a more sensitive and efficient CPC morphology detection. Methods: A total of 137 bone marrow smears and 72 PB smears from patients with at Zhongshan Hospital, Fudan University, were retrospectively reviewed. Using an AI-powered digital pathology platform, Morphogo, 305,019 cell images were collected for training. Morphogo’s efficacy in CPC detection was evaluated with additional 184 PB smears (94 from patients with MM and 90 from those with other hematological malignancies) and compared with manual microscopy. Results: Morphogo achieved 99.64% accuracy, 89.03% sensitivity, and 99.68% specificity in classifying CPCs. At a 0.60 threshold, Morphogo achieved a sensitivity of 96.15%, which was approximately twice that of manual microscopy, with a specificity of 78.03%. Patients with CPCs detected by AI scanning had a significantly shorter median progression-free survival compared with those without CPC detection (18 months vs. 34 months, p
CITATION STYLE
Chen, P., Zhang, L., Cao, X., Jin, X., Chen, N., Zhang, L., … Guo, W. (2024). Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis. Cancer, 130(10), 1884–1893. https://doi.org/10.1002/cncr.35202
Mendeley helps you to discover research relevant for your work.