Improved ECG-Derived Respiration Using Empirical Wavelet Transform and Kernel Principal Component Analysis

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Many methods have been developed to derive respiration signals from electrocardiograms (ECGs). However, traditional methods have two main issues: (1) focusing on certain specific morphological characteristics and (2) not considering the nonlinear relationship between ECGs and respiration. In this paper, an improved ECG-derived respiration (EDR) based on empirical wavelet transform (EWT) and kernel principal component analysis (KPCA) is proposed. To tackle the first problem, EWT is introduced to decompose the ECG signal to extract the low-frequency part. To tackle the second issue, KPCA and preimaging are introduced to capture the nonlinear relationship between ECGs and respiration. The parameter selection of the radial basis function kernel in KPCA is also improved, ensuring accuracy and a reduction in computational cost. The correlation coefficient and amplitude square coherence coefficient are used as metrics to carry out quantitative and qualitative comparisons with three traditional EDR algorithms. The results show that the proposed method performs better than the traditional EDR algorithms in obtaining single-lead-EDR signals.

Cite

CITATION STYLE

APA

Zhuang, S., Li, F., Zhuang, Z., Rao, W., Joseph Raj, A. N., & Rajangam, V. (2021). Improved ECG-Derived Respiration Using Empirical Wavelet Transform and Kernel Principal Component Analysis. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/1360414

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free