An increased number of patients with residual hearing are undergoing cochlear implantation. A subset of these experience delayed hearing loss post-implantation, and the aetiology of this loss is not well understood. Our previous studies suggest that electrical stimulation can induce damage to hair cells in organ of Corti (OC) organotypic cultures. Dexamethasone has the potential to protect residual hearing due to its multiple effects on cells and tissue (e.g., anti-inflammatory, free radical scavenger). We therefore hypothesized that dexamethasone treatment could prevent electrical stimulation induced changes in the OC. Organ of Corti explants from neonatal rats (P2–4) were cultured for 24 h with two different concentrations of dexamethasone. Thereafter, OC were subjected to a charge-balanced biphasic pulsed electrical stimulation (0.44–2 mA) for a further 24 h. Unstimulated dexamethasone-treated OC served as controls. Outcome analysis included immunohistochemical labelling of ribbon synapses, histochemical analysis of free reactive oxygen species and morphological analysis of stereocilia bundles. Overall, the protective effects of dexamethasone on electrically induced damage in cochlear explants were moderate. High-dose dexamethasone protected bundle integrity at higher current levels. Low-dose dexamethasone tended to increase ribbon density in the apical region.
CITATION STYLE
Peter, M. N., Paasche, G., Reich, U., Lenarz, T., & Warnecke, A. (2020). Differential Effects of Low- and High-Dose Dexamethasone on Electrically Induced Damage of the Cultured Organ of Corti. Neurotoxicity Research, 38(2), 487–497. https://doi.org/10.1007/s12640-020-00228-7
Mendeley helps you to discover research relevant for your work.