Generic Interpretable Reaction Condition Predictions with Open Reaction Condition Datasets and Unsupervised Learning of Reaction Center

  • Wang X
  • Hsieh C
  • Yin X
  • et al.
5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Effective synthesis planning powered by deep learning (DL) can significantly accelerate the discovery of new drugs and materials. However, most DL-assisted synthesis planning methods offer either none or very limited capability to recommend suitable reaction conditions (RCs) for their reaction predictions. Currently, the prediction of RCs with a DL framework is hindered by several factors, including: (a) lack of a standardized dataset for benchmarking, (b) lack of a general prediction model with powerful representation, and (c) lack of interpretability. To address these issues, we first created 2 standardized RC datasets covering a broad range of reaction classes and then proposed a powerful and interpretable Transformer-based RC predictor named Parrot. Through careful design of the model architecture, pretraining method, and training strategy, Parrot improved the overall top-3 prediction accuracy on catalysis, solvents, and other reagents by as much as 13.44%, compared to the best previous model on a newly curated dataset. Additionally, the mean absolute error of the predicted temperatures was reduced by about 4 °C. Furthermore, Parrot manifests strong generalization capacity with superior cross-chemical-space prediction accuracy. Attention analysis indicates that Parrot effectively captures crucial chemical information and exhibits a high level of interpretability in the prediction of RCs. The proposed model Parrot exemplifies how modern neural network architecture when appropriately pretrained can be versatile in making reliable, generalizable, and interpretable recommendation for RCs even when the underlying training dataset may still be limited in diversity.

Cite

CITATION STYLE

APA

Wang, X., Hsieh, C.-Y., Yin, X., Wang, J., Li, Y., Deng, Y., … Yao, X. (2023). Generic Interpretable Reaction Condition Predictions with Open Reaction Condition Datasets and Unsupervised Learning of Reaction Center. Research, 6. https://doi.org/10.34133/research.0231

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free