Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors

71Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Perovskite-type oxides with general stoichiometry ABO3 (A is a lanthanide or alkali earth metal, and B is transition metal) constitute a rich material playground for application as resistive-type gas-sensing layers. Immense interest is triggered by, among other factors, stability of abundant elements (≈ 90% in the periodic table) in this stoichiometry, relatively easy tunability of structure and chemical composition, and their off-stoichiometry stability upon doping. Moreover, their capability to host cationic and abundant oxygen vacancies renders them with excellent electrical and redox properties, and synergistic functions that influence their performance. Herein, we present an overview of recent development in the use of ABO3 perovskites as resistive-type gas sensors, clearly elucidating current experimental strategies, and sensing mechanisms involved in realization of enhanced sensing performance. Finally, we provide a brief overview of limitations that hamper their potential utilization in gas sensors and suggest new pathways for novel applications of ABO3 materials.

Cite

CITATION STYLE

APA

Bulemo, P. M., & Kim, I. D. (2020, January 1). Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. Journal of the Korean Ceramic Society. Springer. https://doi.org/10.1007/s43207-019-00003-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free