A Universal Strategy for the Efficient Expression of Nanobodies in Pichia pastoris

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In recent years, nanobodies have played an increasingly crucial role in virus neutralization, ELISA detection, and medical imaging. This study aimed to explore a universal expression strategy in Pichia pastoris using three nanobodies, denoted Va, Vb, and Vc, as model proteins. Initially, plasmids pLD-AOXα and pLD-AOX were engineered to minimize the risk of antibiotic resistance gene drift. Optimization of promoters and signal peptides resulted in a 1.38-fold and 1.89-fold increase in Va production. Further optimization of gene dosage led to an additional 1.39-fold enhancement in Va yield. Subsequently, 25 molecular chaperones were co-expressed with Va under the control of the wild-type AOX1 promoter, with HAC1 further increasing Va yield by 1.5-fold. By fine-tuning the promoter strength for HAC1, Va production was increased by 2.41-fold under the control of the 55p promoter. Finally, through high-density fermentation, the Va yield reached 2.13 g/L, representing a 49.8-fold increase compared to the initial strain 1-AOXα-Va in shake-flask culture. Integration of pLD-55p-HAC1 into the GS115 genome resulted in the H55 host, and the transformation of multicopy plasmids into this host led to a 1.98-fold increase in Vb yield and a 2.34-fold increase in Vc yield, respectively. The engineering of antibiotic-free parental plasmids, modification of expression components, gene dosage optimization, and the H55 host are regarded as a composite strategy which will pave the way for efficient expression of nanobodies in the future.

Cite

CITATION STYLE

APA

Zheng, Y., Li, B., Zhao, S., Liu, J., & Li, D. (2024). A Universal Strategy for the Efficient Expression of Nanobodies in Pichia pastoris. Fermentation, 10(1). https://doi.org/10.3390/fermentation10010037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free