The application of magneto theological dampers for controlling the dynamics of a fire out-of-battery recoil system is examined, using a dynamic simulation of a 105 mm cannon. Upon providing a brief background on MR dampers and fire out-of-battery dynamics, we will describe the simulation model, along with some of the results obtained from the model. The simulation results show that although conventional hydraulic recoil dampers can be designed and tuned to control fire out-of-battery dynamics as effectively as MR dampers, they are not able to perform well when firing faults are encountered. The results show that MR dampers are able to adapt to the firing faults such as pre-fire, hang-fire, and misfire and provide "soft recoil" under all firing conditions. The inability of conventional hydraulic dampers to adapt to the firing faults can yield recoil dynamics that seriously jeopardize the performance of the gun. Therefore, the results presented here show that MR dampers may provide an enabling technology in achieving fire out-of-battery under all firing conditions.
CITATION STYLE
Ahmadian, M., Appleton, R., & Norris, J. A. (2002). An analytical study of fire out of battery using magneto rheological dampers. Shock and Vibration, 9(3), 129–142. https://doi.org/10.1155/2002/983140
Mendeley helps you to discover research relevant for your work.