Background: HIV-1 pol, which encodes enzymes required for virus replication, is initially translated as a Gag-Pol fusion protein. Gag-Pol is incorporated into virions via interactions with Gag precursor Pr55gag. Protease (PR) embedded in Gag-Pol mediates the proteolytic processing of both Pr55gag and Gag-Pol during or soon after virus particle release from cells. Since efficient Gag-Pol viral incorporation depends on interaction with Pr55gag via its N-terminal Gag domain, the prevention of premature Gag cleavage may alleviate Gag-Pol packaging deficiencies associated with cleavage enhancement from PR. Results: We engineered PR cleavage-blocking Gag mutations with the potential to significantly reduce Gag processing efficiency. Such mutations may mitigate the negative effects of enhanced PR activation on virus assembly and Gag-Pol packaging due to an RT dimerization enhancer or leucine zipper dimerization motif. When co-expressed with Pr55gag, we noted that enhanced PR activation resulted in reduced Gag-Pol cis or trans incorporation into Pr55gag particles, regardless of whether or not Gag cleavage sites within Gag-Pol were blocked. Conclusions: Our data suggest that the amount of HIV-1 Gag-Pol or Pol viral incorporation is largely dependent on virus particle production, and that cleavage blocking in the Gag-Pol N-terminal Gag domain does not exert significant impacts on Pol packaging.
CITATION STYLE
Lin, Y. R., Chu, S. M., Yu, F. H., Huang, K. J., & Wang, C. T. (2022). Effects of reduced gag cleavage efficiency on HIV-1 Gag-Pol package. BMC Microbiology, 22(1). https://doi.org/10.1186/s12866-022-02503-3
Mendeley helps you to discover research relevant for your work.