Lyapunov techniques for stochastic differential equations driven by fractional Brownian motion

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Little seems to be known about evaluating the stochastic stability of stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) via stochastic Lyapunov technique. The objective of this paper is to work with stochastic stability criterions for such systems. By defining a new derivative operator and constructing some suitable stochastic Lyapunov function, we establish some sufficient conditions for two types of stability, that is, stability in probability and moment exponential stability of a class of nonlinear SDEs driven by fBm. We will also give an example to illustrate our theory. Specifically, the obtained results open a possible way to stochastic stabilization and destabilization problem associated with nonlinear SDEs driven by fBm. © 2014 Caibin Zeng et al.

Cite

CITATION STYLE

APA

Zeng, C., Yang, Q., & Chen, Y. (2014). Lyapunov techniques for stochastic differential equations driven by fractional Brownian motion. Abstract and Applied Analysis, 2014. https://doi.org/10.1155/2014/292653

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free