Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model

20Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Porous carbons as solid adsorbent materials possess effective porosity characteristics that are the most important factors for gas storage. The chemical activating routes facilitate hydrogen storage by adsorbing on the high surface area and microporous features of porous carbon-based adsorbents. The present research proposed to predict H2 storage using four nature-inspired algorithms applied in the random forest (RF) model. Various carbon-based adsorbents, chemical activating agents, ratios, micro-structural features, and operational parameters as input variables are applied in the ML model to predict H2 uptake (wt%). Particle swarm and gray wolf optimizations (PSO and GWO) in the RF model display accuracy in the train and test phases, with an R2 of ~0.98 and 0.91, respectively. Sensitivity analysis demonstrated the ranks for temperature, total pore volume, specific surface area, and micropore volume in first to fourth, with relevancy scores of 1 and 0.48. The feasibility of algorithms in training sizes 80 to 60% evaluated that RMSE and MAE achieved 0.6 to 1, and 0.38 to 0.52. This study contributes to the development of sustainable energy sources by providing a predictive model and insights into the design of porous carbon adsorbents for hydrogen storage. The use of nature-inspired algorithms in the model development process is also a novel approach that could be applied to other areas of materials science and engineering.

Cite

CITATION STYLE

APA

Thanh, H. V., Ebrahimnia Taremsari, S., Ranjbar, B., Mashhadimoslem, H., Rahimi, E., Rahimi, M., & Elkamel, A. (2023). Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model. Energies, 16(5). https://doi.org/10.3390/en16052348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free