Oculocutaneous albinism type ITS is caused by mutations that render the melanocyte-specific enzyme tyrosinase temperature-sensitive (ts); the enzyme is inactive in cells grown at 37°C but displays full activity in cells grown at 31°C. To distinguish whether the ts phenotype of the common R402Q variant of human tyrosinase is due to altered enzymatic activity or to misfolding and a defect in intracellular trafficking, we analyzed its localization and processing in transiently transfected HeLa cells. R402Q tyrosinase accumulates in the endoplasmic reticulum (ER) at 37°C but exits the ER and accumulates in endosomal structures in cells grown at 31°C. The inability of the R402Q variant to exit the ER is confirmed by the failure to acquire endoglycosidase H resistance at 37°C and cannot be accounted for solely by enhanced proteasome-mediated degradation. ER retention at 37°C is mediated by the lumenal domain of R402Q tyrosinase, is not dependent on tethering to the membrane, and is irreversible. Finally, a wild-type allelic form of tyrosinase is partially ts in transiently transfected HeLa cells. The data show that human tyrosinase expressed in non-melanogenic cells folds and exits the ER inefficiently and that R402Q tyrosinase exaggerates this defect, resulting in a failure to exit the ER at physiologic temperatures.
CITATION STYLE
Berson, J. F., Frank, D. W., Calvo, P. A., Bieler, B. M., & Marks, M. S. (2000). A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. Journal of Biological Chemistry, 275(16), 12281–12289. https://doi.org/10.1074/jbc.275.16.12281
Mendeley helps you to discover research relevant for your work.