The phospholipase A 1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation

55Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Platelet activation initiates an upsurge in polyunsaturated (18:2 and 20:4) lysophosphatidic acid (LPA) production. The biochemical pathway(s) responsible for LPA production during blood clotting are not yet fully understood. Here we describe the purifi cation of a phospholipase A 1 (PLA 1 ) from thrombin-activated human platelets using sequential chromatographic steps followed by fl uorophosphonate (FP)-biotin affi nity labeling and proteomics characterization that identifi ed acyl-protein thioesterase 1 (APT1), also known as lysophospholipase A-I (LYPLA-I; accession code O75608) as a novel PLA 1 . Addition of this recombinant PLA 1 signifi - cantly increased the production of sn -2-esterifi ed polyunsaturated LPCs and the corresponding LPAs in plasma. We examined the regioisomeric preference of lysophospholipase D/autotaxin (ATX), which is the subsequent step in LPA production. To prevent acyl migration, ether-linked regioisomers of oleyl- sn -glycero-3-phosphocholine (lyso-PAF) were synthesized. ATX preferred the sn -1 to the sn -2 regioisomer of lyso-PAF. We propose the following LPA production pathway in blood: 1 ) Activated platelets release PLA Platelet activation initiates an upsurge in polyunsaturated (18:2 and 20:4) lysophosphatidic acid (LPA) production. The biochemical pathway(s) responsible for LPA production during blood clotting are not yet fully understood. Here we describe the purifi cation of a phospholipase A 1 (PLA 1 ) from thrombin-activated human platelets using sequential chromatographic steps followed by fl uorophosphonate (FP)-biotin affi nity labeling and proteomics characterization that identifi ed acyl-protein thioesterase 1 (APT1), also known as lysophospholipase A-I (LYPLA-I; accession code O75608) as a novel PLA 1 . Addition of this recombinant PLA 1 signifi - cantly increased the production of sn -2-esterifi ed polyunsaturated LPCs and the corresponding LPAs in plasma. We examined the regioisomeric preference of lysophospholipase D/autotaxin (ATX), which is the subsequent step in LPA production. To prevent acyl migration, ether-linked regioisomers of oleyl- sn -glycero-3-phosphocholine (lyso-PAF) were synthesized. ATX preferred the sn -1 to the sn -2 regioisomer of lyso- PAF. We propose the following LPA production pathway in blood: 1 ) Activated platelets release PLA 1 ; 2 ) PLA 1 generates a pool of sn-2 lysophospholipids; 3 ) These newly generated sn-2 lysophospholipids undergo acyl migration to yield sn-1 lysophospholipids, which are the preferred substrates of ATX; and 4 ) ATX cleaves the sn-1 lysophospholipids to generate sn-1 LPA species containing predominantly 18:2 and 20:4 fatty acids.-Bolen, A. L., A. P. Naren, S. Yarlagadda, S. Beranova- Giorgianni, L. Chen, D. Norman, D. L. Baker, M. M. Rowland, M. D. Best, T. Sano, T. Tsukahara, K. Liliom, Y. Igarashi, and G. Tigyi. The phospholipase A 1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. J. Lipid Res. 2011. 52: 958-970.1 ; 2 ) PLA 1 generates a pool of sn-2 lysophospholipids; 3 ) These newly generated sn-2 lysophospholipids undergo acyl migration to yield sn-1 lysophospholipids, which are the preferred substrates of ATX; and 4 ) ATX cleaves the sn-1 lysophospholipids to generate sn-1 LPA species containing predominantly 18:2 and 20:4 fatty acids. Copyright © 2011 by the American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Bolen, A. L., Naren, A. P., Yarlagadda, S., Beranova-Giorgianni, S., Chen, L., Norman, D., … Tigyi, G. (2011). The phospholipase A 1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. Journal of Lipid Research, 52(5), 958–970. https://doi.org/10.1194/jlr.M013326

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free