Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity

33Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chloropicrin is widely used to control ginger wilt in China, which have an enormous impact on soil microbial diversity. However, little is known on the possible legacy effects on soil microbial community composition with continuous fumigation over different years. In this report, we used high throughput Illumina sequencing and Biolog ECO microplates to determine the bacterial community and microbial metabolic activity in ginger harvest fields of non-fumigation (NF), chloropicrin-fumigation for 1 year (F_1) and continuous chloropicrin-fumigation for 3 years (F_3). The results showed that microbial richness and diversity in F_3 were the lowest, while the metabolic activity had no significant difference. With the increase of fumigation years, the incidence of bacterial wilt was decreased, the relative abundance of Actinobacteria and Saccharibacteria were gradually increased. Using LEfSe analyses, we found that Saccharibacteria was the most prominent biomarker in F_3. Eight genera associated with antibiotic production in F_3 were screened out, of which seven belonged to Actinobacteria, and one belonged to Bacteroidetes. The study indicated that with the increase of fumigation years, soil antibacterial capacity may be increased (possible reason for reduced the incidence of bacterial wilt), and Saccharibacteria played a potential role in evaluating the biological effects of continuous fumigation.

Cite

CITATION STYLE

APA

Zhang, S., Liu, X., Jiang, Q., Shen, G., & Ding, W. (2017). Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0475-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free