Sensitivity Study of Four Land Surface Schemes in the WRF Model

  • Jin J
  • Miller N
  • Schlegel N
N/ACitations
Citations of this article
157Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Weather Research and Forecasting (WRF) model version 3.0 developed by the National Center for Atmospheric Research (NCAR) includes three land surface schemes: the simple soil thermal diffusion (STD) scheme, the Noah scheme, and the Rapid Update Cycle (RUC) scheme. We have recently coupled the sophisticated NCAR Community Land Model version 3 (CLM3) into WRF to better characterize land surface processes. Among these four land surface schemes, the STD scheme is the simplest in both structure and process physics. The Noah and RUC schemes are at the intermediate level of complexity. CLM3 includes the most sophisticated snow, soil, and vegetation physics among these land surface schemes. WRF simulations with all four land surface schemes over the western United States (WUS) were carried out for the 1 October 1995 through 30 September 1996. The results show that land surface processes strongly affect temperature simulations over the (WUS). As compared to observations, WRF‐CLM3 with the highest complexity level significantly improves temperature simulations, except for the wintertime maximum temperature. Precipitation is dramatically overestimated by WRF with all four land surface schemes over the (WUS) analyzed in this study and does not show a close relationship with land surface processes.

Cite

CITATION STYLE

APA

Jin, J., Miller, N. L., & Schlegel, N. (2010). Sensitivity Study of Four Land Surface Schemes in the WRF Model. Advances in Meteorology, 2010(1). https://doi.org/10.1155/2010/167436

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free