Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study

33Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Speleothem oxygen isotopic (δ18O) records are used to reconstruct past hydroclimate yet records from the same cave do not always replicate. We use a global database of speleothem δ18O to quantify the replicability of records to show that disagreement is common worldwide, occurs across timescales and is unrelated to climate, depth or lithology. Our global analysis demonstrates that within-cave differences in mean speleothem δ18O values are consistent with those of dripwater, supporting a ubiquitous influence of flowpaths. We present a case study of four new stalagmite records from Golgotha Cave, southwest Australia, where the isotopic differences between them are informed by cave monitoring. It is demonstrated that karst hydrology is a major driver of within-cave speleothem and dripwater δ18O variability, primarily due to the influence of fractures on flowpaths. Applying our understanding of water movement through fractures assists in quantitative reconstruction of past climate variability from speleothem δ18O records.

Cite

CITATION STYLE

APA

Treble, P. C., Baker, A., Abram, N. J., Hellstrom, J. C., Crawford, J., Gagan, M. K., … Paterson, D. (2022). Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Communications Earth and Environment, 3(1). https://doi.org/10.1038/s43247-022-00347-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free