An outlier detection method based on mahalanobis distance for source localization

16Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

This paper addresses the problem of localization accuracy degradation caused by outliers of the angle of arrival (AOA). The problem of outlier detection of the AOA is converted into the detection of the estimated source position sets, which are obtained by the proposed division and greedy replacement method. The Mahalanobis distance based on robust mean and covariance matrix estimation method is then introduced to identify the outliers from the position sets. Finally, the weighted least squares method based on the reliable probabilities and distances is proposed for source localization. The simulation and experimental results show that the proposed method outperforms representative methods when unreliable AOAs are present.

Cite

CITATION STYLE

APA

Yan, Q., Chen, J., & De Strycker, L. (2018). An outlier detection method based on mahalanobis distance for source localization. Sensors (Switzerland), 18(7). https://doi.org/10.3390/s18072186

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free