A series of four binuclear complexes of general formula [(C^C)Au(Cl)(L^L)(Cl)Au(C^C)], where C^C is 4,4’-diterbutylbiphenyl and L^L is either a bridging diphosphine or 4,4’-bipyridine, are synthetized with 52 to 72 % yield and structurally characterized by X-ray diffraction. The use of the chelating 1,2-diphenylphosphinoethane ligand in a 1 : 2 (P^P):Au stoichiometry leads to the near quantitative formation of a gold double-complex salt of general formula [(C^C)Au(P^P)][(C^C^)AuCl2]. The compounds display long-lived yellow-green phosphorescence with λem in the range of 525 to 585 nm in the solid state with photoluminescence quantum yields (PLQY) up to 10 %. These AuIII complexes are tested for their antiproliferative activity against lung adenocarcinoma cells A549 and results show that compounds 2 and 5 are the most promising candidates. The digold salt 5 shows anticancer activity between 66 and 200 nM on the tested cancer cell lines, whereas derivative 2 displays concentration values required to reduce by 50 % the cell viability (IC50) between 7 and 11 μM. Reactivity studies of compound 5 reveal that the [(C^C)Au(P^P)]+ cation is stable in the presence of relevant biomolecules including glutathione suggesting a structural mechanism of action.
CITATION STYLE
Giuso, V., Yang, J., Forté, J., Dossmann, H., Daniel, C., Gourlaouen, C., … Bertrand, B. (2023). Binuclear Biphenyl Organogold(III) Complexes: Synthesis, Photophysical and Theoretical Investigation, and Anticancer Activity. ChemPlusChem, 88(11). https://doi.org/10.1002/cplu.202300303
Mendeley helps you to discover research relevant for your work.