Galactic Pal-eontology: Abundance analysis of the disrupting globular cluster Palomar 5

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

We present a chemical abundance analysis of the tidally disrupted globular cluster (GC) Palomar 5. By co-adding high-resolution spectra of 15 member stars from the cluster's main body, taken at low signal-to-noise with the Keck/HIRES spectrograph, we were able to measure integrated abundance ratios of 24 species of 20 elements including all major nucleosynthetic channels (namely the light element Na; α-elements Mg, Si, Ca, Ti; Fe-peak and heavy elements Sc, V, Cr, Mn, Co, Ni, Cu, Zn; and the neutron-capture elements Y, Zr, Ba, La, Nd, Sm, Eu). The mean metallicity of -1.56 ± 0.02 ± 0.06 dex (statistical and systematic errors) agrees well with the values from individual, low-resolution measurements of individual stars, but it is lower than previous high-resolution results of a small number of stars in the literature. Comparison with Galactic halo stars and other disrupted and unperturbed GCs renders Pal 5 a typical representative of the Milky Way halo population, as has been noted before, emphasizing that the early chemical evolution of such clusters is decoupled from their later dynamical history. We also performed a test as to the detectability of light element variations in this co-added abundance analysis technique and found that this approach is not sensitive even in the presence of a broad range in sodium of ~0.6 dex, a value typically found in the old halo GCs. Thus, while methods of determining the global abundance patterns of such objects are well suited to study their overall enrichment histories, chemical distinctions of their multiple stellar populations is still best obtained from measurements of individual stars.

Cite

CITATION STYLE

APA

Koch, A., & Côté, P. (2017). Galactic Pal-eontology: Abundance analysis of the disrupting globular cluster Palomar 5. Astronomy and Astrophysics, 601. https://doi.org/10.1051/0004-6361/201629872

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free