Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer

23Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Click-Through Rate (CTR) prediction, which aims to estimate the probability that a user will click an item, is an essential component of online advertising. Existing methods mainly attempt to mine user interests from users' historical behaviours, which contain users' directly interacted items. Although these methods have made great progress, they are often limited by the recommender system's direct exposure and inactive interactions, and thus fail to mine all potential user interests. To tackle these problems, we propose Neighbor-Interaction based CTR prediction (NI-CTR), which considers this task under a Heterogeneous Information Network (HIN) setting. In short, Neighbor-Interaction based CTR prediction involves the local neighborhood of the target user-item pair in the HIN to predict their linkage. In order to guide the representation learning of the local neighbourhood, we further consider different kinds of interactions among the local neighborhood nodes from both explicit and implicit perspective, and propose a novel Graph-Masked Transformer (GMT) to effectively incorporates these kinds of interactions to produce highly representative embeddings for the target user-item pair. Moreover, in order to improve model robustness against neighbour sampling, we enforce a consistency regularization loss over the neighbourhood embedding. We conduct extensive experiments on two real-world datasets with millions of instances and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly. Meanwhile, the comprehensive ablation studies verify the effectiveness of every component of our model. Furthermore, we have deployed this framework on the WeChat Official Account Platform with billions of users. The online A/B tests demonstrate an average CTR improvement of 21.9% against all online baselines.

Cite

CITATION STYLE

APA

Min, E., Rong, Y., Xu, T., Bian, Y., Luo, D., Lin, K., … Zhao, P. (2022). Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer. In SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 353–362). Association for Computing Machinery, Inc. https://doi.org/10.1145/3477495.3532031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free