Acidic and basic hydrolysis of poly(N-vinylformamide)

87Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Poly(N-vinylformamide) (PNVF) was synthesized and hydrolyzed to poly(vinylamine) (PVAm) in both HCl and NaOH solutions. The hydrolysis kinetics and the equilibrium hydrolysis were examined experimentally at different temperatures, polymer concentrations, and acid- or base-to-amide molar ratios. The hydrolysis kinetics strongly depended on temperature, polymer, and HCl or NaOH concentrations, but showed little dependence on PNVF molecular weight. The acid hydrolysis of PNVF exhibited limited conversions because of the electrostatic repulsion among the cationic amine groups generated during hydrolysis and proton hydrates. In the basic hydrolysis, complete amide conversions were observed when the NaOH/amide molar ratios were greater than unity. The effects of temperature and PNVF concentration on the equilibrium amide conversion appeared to be negligible in both acidic and basic hydrolysis. The equilibrium conversions of base hydrolysis were higher than those of acidic hydrolysis under the same reaction conditions. At NaOH/amide ratios of less than unity, the equilibrium hydrolysis experiments revealed that one base molecule could induce the hydrolysis of more than one amide group. © 2002 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 86.

Cite

CITATION STYLE

APA

Gu, L., Zhu, S., & Hrymak, A. N. (2002). Acidic and basic hydrolysis of poly(N-vinylformamide). Journal of Applied Polymer Science, 86(13), 3412–3419. https://doi.org/10.1002/app.11364

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free