Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 °C, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Cite

CITATION STYLE

APA

Eom, Y. S., Jang, K. S., Son, J. H., Bae, H. C., & Choi, K. S. (2019). Conductive adhesive with transient liquid-phase sintering technology for high-power device applications. ETRI Journal, 41(6), 820–828. https://doi.org/10.4218/etrij.2018-0250

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free